NASA Flies Drones for Air Taxi Research

The test at NASA's Langley Research Center involved multiple drones flying beyond visual line of sight (BVLOS) and is seen as an important step towards advancing self-flying capabilities for air taxis By Joe Macey / 17 Jan 2024
NASA Flies Drone Autonomously for Air Taxi Research
Follow AAMi

Researchers at NASA’s Langley Research Center in Hampton, Virginia, recently flew multiple drones beyond visual line of sight (BVLOS) with no visual observer.

The drones successfully flew around obstacles and each other during take-off, along a planned route, and upon landing, all autonomously without a pilot controlling the flight. 

This test is said to mark an important step towards advancing self-flying capabilities for air taxis.

“Flying the vehicles beyond visual line of sight, where neither the vehicle nor the airspace is monitored using direct human observation, demonstrates years of research into automation and safety systems, and required specific approval from the Federal Aviation Administration and NASA to complete,” said Lou Glaab, branch head for the aeronautics systems engineering branch at NASA Langley.

It is believed to be safer and more cost effective to test self-flying technology meant for larger, passenger carrying air taxis on smaller drones to observe how they avoid each other and other obstacles.

NASA is also testing elements of automation technology using helicopters. These stand-in aircraft help NASA mature the autonomy well before self-flying air taxis are integrated into the skies.

“When you have multiple vehicles, all coming and going from a vertiport that is located adjacent to an airport or deep within a community, we have to ensure the automation technologies of these vehicles are capable of safely handling a high volume of air traffic in a busy area,” said Glaab.

Building upon past tests, the team successfully performed multiple flights using purchased ALTA 8 Uncrewed Aircraft Systems (UAS) with no visual observer and flew the drones beyond visual line of sight, referred to as “NOVO-BVLOS” flights.

The software loaded onto the small drones performed airspace communications, flight path management, avoidance with other vehicles, and more skills needed to operate in a busy airspace. This is imperative for what is envisioned with Advanced Air Mobility (AAM), where drones and air taxis will be operating at the same time on a routine basis.

The flight tests were observed from NASA Langley’s Remote Operations for Autonomous Missions control center while the drones took off and landed at the City Environment Range Testing for Autonomous Integrated Navigation test range.

NASA will transfer the new technology created during this project to the public to ensure industry manufacturers can access the software while designing their vehicles.

“NASA’s ability to transfer these technologies will significantly benefit the industry,” said Jake Schaefer, flight operations lead for the project. “By conducting flight tests within the national airspace, in close proximity to airports and an urban environment, we are able to test technologies and procedures in a controlled but relevant environment for future AAM vehicles.”

One of these technologies was ICAROUS (Integrated Configurable Architecture for Reliable Operations of Unmanned Systems). This software provides an autonomous detect-and-avoid function and is part of the overall system to maintain “well clear” from other air traffic.

Another technology used was NASA’s Safe2Ditch system, which allows the vehicle to observe the ground below and make an autonomous decision on the safest place to land in the event of an in-flight emergency.

NASA’s AAM mission has multiple projects contributing to various research areas. This project, called the High Density Vertiplex, was specifically focused on testing and evaluating where these future vehicles will take off and land at high frequency, called vertiports, or vertiplexes, for multiple vertiports near each other, and the technology advancements needed to make this successful.

Posted by Joe Macey Joseph Macey is a Content Specialist at Advanced Air Mobility International, focusing on emerging aviation technologies since joining in 2022. He has particular expertise in eVTOLs, vertiports, and propulsion systems. A graduate of Falmouth University in Journalism, Joseph began his career in 2019 as a local reporter. His journalism experience sharpens both his reporting and interview skills, enabling him to deliver well-informed, authoritative insights on the latest trends in the aviation sector. Connect

Latest Articles

Archer Partnership Supports Midnight eVTOL Integration in Saudi Arabia

Archer Aviation has partnered with THC and RSG to test and develop its Midnight eVTOL aircraft in a controlled sandbox environment in Saudi Arabia, exploring performance, regulatory alignment, and potential integration into the Kingdom’s future air mobility

Nov 27, 2025
BETA Technologies & Near Earth Autonomy Collaborate on Autonomous VTOL Systems

Partnership aims to integrate advanced guidance systems into electric aircraft to double payload capacity and expand defense and commercial operations

Nov 26, 2025
First Commercial Vertiport Tops Out in Dubai & Targets 2026 Launch

Construction on Dubai's DXV facility has reached the 60% mark as Skyports Infrastructure and the RTA move closer to establishing the world's first aerial taxi network

Nov 25, 2025
Archer to Supply Proprietary Electric Powertrain for Autonomous Air Vehicle Development

Archer Aviation has signed its first third-party deal to supply the dual-use, proprietary electric powertrain from its Midnight eVTOL for the development of Anduril and EDGE Group’s new Omen Autonomous Air Vehicle system

Nov 24, 2025
Skyportz Unveils Aeroberm Vertipad at Dubai Airshow

New modular landing system from Skyports aims to enable property developers and asset owners to join the Advanced Air Mobility network affordably and safely

Nov 21, 2025
Hybrid-Electric VTOL Aircraft Program Secures Major Investment & Partnership

Ambitious Air Mobility Group is partnering with Zuri.com to accelerate the certification and production of hybrid-electric vertical take-off and landing platforms

Nov 20, 2025